Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductors

Identifieur interne : 000144 ( Main/Repository ); précédent : 000143; suivant : 000145

Electrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductors

Auteurs : RBID : Pascal:14-0084524

Descripteurs français

English descriptors

Abstract

In this study, the feasibility of using a photoconductor with a Ga2O3/CuGaSe2 heterojunction for visible light sensors was investigated. We propose a hole-blocking structure using gallium oxide (Ga2O3) for CuIn1-xGaxSe1-ySy (CIGS) thin film to reduce dark current. Experimental results showed that this structure drastically reduced the dark current. Then, avalanche multiplication phenomenon was observed at an applied voltage of over 6 V. However, this structure had sensitivity only in the ultraviolet light region. It seemed the depletion region in the heterojunction spread almost completely in the Ga2O3 layer but not in the CIGS layer because the carrier density of the non-doped Ga2O3 layer was much lower than that of the CIGS layer. We therefore used tin-doped Ga2O3 (Ga2O3:Sn) for the n-type layer to increase carrier density. As a result, the depletion region shifted to the CIGS film and the cells had sensitivity in all visible regions. These results indicate that the Ga2O3:Sn/CuGaSe2 heterojunction is feasible for visible light photoconductors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084524

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical and optical properties of Ga
<sub>2</sub>
O
<sub>3</sub>
/CuGaSe
<sub>2</sub>
heterojunction photoconductors</title>
<author>
<name sortKey="Kikuchi, Kenji" uniqKey="Kikuchi K">Kenji Kikuchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NHK Science and Technology Research Laboratories, 1-10-11, Kinuta</s1>
<s2>Setagaya-ku, Tokyo, 157-8510</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Setagaya-ku, Tokyo, 157-8510</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi</s1>
<s2>Kouhoku-ku, Yokohama, 223-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Kouhoku-ku, Yokohama, 223-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Imura, Shigeyuki" uniqKey="Imura S">Shigeyuki Imura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NHK Science and Technology Research Laboratories, 1-10-11, Kinuta</s1>
<s2>Setagaya-ku, Tokyo, 157-8510</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Setagaya-ku, Tokyo, 157-8510</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miyakawa, Kazunori" uniqKey="Miyakawa K">Kazunori Miyakawa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NHK Science and Technology Research Laboratories, 1-10-11, Kinuta</s1>
<s2>Setagaya-ku, Tokyo, 157-8510</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Setagaya-ku, Tokyo, 157-8510</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kubota, Misao" uniqKey="Kubota M">Misao Kubota</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NHK Science and Technology Research Laboratories, 1-10-11, Kinuta</s1>
<s2>Setagaya-ku, Tokyo, 157-8510</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Setagaya-ku, Tokyo, 157-8510</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohta, Eiji" uniqKey="Ohta E">Eiji Ohta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi</s1>
<s2>Kouhoku-ku, Yokohama, 223-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Kouhoku-ku, Yokohama, 223-8522</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084524</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084524 INIST</idno>
<idno type="RBID">Pascal:14-0084524</idno>
<idno type="wicri:Area/Main/Corpus">000085</idno>
<idno type="wicri:Area/Main/Repository">000144</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Copper</term>
<term>Dark current</term>
<term>Doping</term>
<term>Electrical properties</term>
<term>Experimental result</term>
<term>Gallium</term>
<term>Gallium oxide</term>
<term>Heterojunctions</term>
<term>Indium</term>
<term>Optical properties</term>
<term>Selenides</term>
<term>Sensors</term>
<term>Thin films</term>
<term>Tin additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électrique</term>
<term>Propriété optique</term>
<term>Hétérojonction</term>
<term>Capteur</term>
<term>Oxyde de gallium</term>
<term>Couche mince</term>
<term>Courant obscurité</term>
<term>Résultat expérimental</term>
<term>Densité porteur charge</term>
<term>Dopage</term>
<term>Addition étain</term>
<term>Cuivre</term>
<term>Indium</term>
<term>Gallium</term>
<term>Séléniure</term>
<term>Ga2O3</term>
<term>7350</term>
<term>7866</term>
<term>0707D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, the feasibility of using a photoconductor with a Ga
<sub>2</sub>
O
<sub>3</sub>
/CuGaSe
<sub>2</sub>
heterojunction for visible light sensors was investigated. We propose a hole-blocking structure using gallium oxide (Ga
<sub>2</sub>
O
<sub>3</sub>
) for CuIn
<sub>1-x</sub>
Ga
<sub>x</sub>
Se
<sub>1-y</sub>
S
<sub>y</sub>
(CIGS) thin film to reduce dark current. Experimental results showed that this structure drastically reduced the dark current. Then, avalanche multiplication phenomenon was observed at an applied voltage of over 6 V. However, this structure had sensitivity only in the ultraviolet light region. It seemed the depletion region in the heterojunction spread almost completely in the Ga
<sub>2</sub>
O
<sub>3</sub>
layer but not in the CIGS layer because the carrier density of the non-doped Ga
<sub>2</sub>
O
<sub>3</sub>
layer was much lower than that of the CIGS layer. We therefore used tin-doped Ga
<sub>2</sub>
O
<sub>3</sub>
(Ga
<sub>2</sub>
O
<sub>3</sub>
:Sn) for the n-type layer to increase carrier density. As a result, the depletion region shifted to the CIGS film and the cells had sensitivity in all visible regions. These results indicate that the Ga
<sub>2</sub>
O
<sub>3</sub>
:Sn/CuGaSe
<sub>2</sub>
heterojunction is feasible for visible light photoconductors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>550</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical and optical properties of Ga
<sub>2</sub>
O
<sub>3</sub>
/CuGaSe
<sub>2</sub>
heterojunction photoconductors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KIKUCHI (Kenji)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>IMURA (Shigeyuki)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MIYAKAWA (Kazunori)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KUBOTA (Misao)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>OHTA (Eiji)</s1>
</fA11>
<fA14 i1="01">
<s1>NHK Science and Technology Research Laboratories, 1-10-11, Kinuta</s1>
<s2>Setagaya-ku, Tokyo, 157-8510</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi</s1>
<s2>Kouhoku-ku, Yokohama, 223-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>635-637</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786170980</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084524</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, the feasibility of using a photoconductor with a Ga
<sub>2</sub>
O
<sub>3</sub>
/CuGaSe
<sub>2</sub>
heterojunction for visible light sensors was investigated. We propose a hole-blocking structure using gallium oxide (Ga
<sub>2</sub>
O
<sub>3</sub>
) for CuIn
<sub>1-x</sub>
Ga
<sub>x</sub>
Se
<sub>1-y</sub>
S
<sub>y</sub>
(CIGS) thin film to reduce dark current. Experimental results showed that this structure drastically reduced the dark current. Then, avalanche multiplication phenomenon was observed at an applied voltage of over 6 V. However, this structure had sensitivity only in the ultraviolet light region. It seemed the depletion region in the heterojunction spread almost completely in the Ga
<sub>2</sub>
O
<sub>3</sub>
layer but not in the CIGS layer because the carrier density of the non-doped Ga
<sub>2</sub>
O
<sub>3</sub>
layer was much lower than that of the CIGS layer. We therefore used tin-doped Ga
<sub>2</sub>
O
<sub>3</sub>
(Ga
<sub>2</sub>
O
<sub>3</sub>
:Sn) for the n-type layer to increase carrier density. As a result, the depletion region shifted to the CIGS film and the cells had sensitivity in all visible regions. These results indicate that the Ga
<sub>2</sub>
O
<sub>3</sub>
:Sn/CuGaSe
<sub>2</sub>
heterojunction is feasible for visible light photoconductors.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Capteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Sensors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde de gallium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Gallium oxide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Galio óxido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Résultat expérimental</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Experimental result</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Resultado experimental</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure</s0>
<s2>NA</s2>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Selenides</s0>
<s2>NA</s2>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Ga2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000144 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000144 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084524
   |texte=   Electrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024